3.253 \(\int \frac{(e \cos (c+d x))^{15/2}}{(a+a \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=169 \[ \frac{26 e^3 (e \cos (c+d x))^{9/2}}{45 a^3 d}+\frac{26 e^7 \sin (c+d x) \sqrt{e \cos (c+d x)}}{21 a^3 d}+\frac{26 e^5 \sin (c+d x) (e \cos (c+d x))^{5/2}}{35 a^3 d}+\frac{26 e^8 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 a^3 d \sqrt{e \cos (c+d x)}}+\frac{4 e (e \cos (c+d x))^{13/2}}{5 a d (a \sin (c+d x)+a)^2} \]

[Out]

(26*e^3*(e*Cos[c + d*x])^(9/2))/(45*a^3*d) + (26*e^8*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(21*a^3*d*S
qrt[e*Cos[c + d*x]]) + (26*e^7*Sqrt[e*Cos[c + d*x]]*Sin[c + d*x])/(21*a^3*d) + (26*e^5*(e*Cos[c + d*x])^(5/2)*
Sin[c + d*x])/(35*a^3*d) + (4*e*(e*Cos[c + d*x])^(13/2))/(5*a*d*(a + a*Sin[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.179051, antiderivative size = 169, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2680, 2682, 2635, 2642, 2641} \[ \frac{26 e^3 (e \cos (c+d x))^{9/2}}{45 a^3 d}+\frac{26 e^7 \sin (c+d x) \sqrt{e \cos (c+d x)}}{21 a^3 d}+\frac{26 e^5 \sin (c+d x) (e \cos (c+d x))^{5/2}}{35 a^3 d}+\frac{26 e^8 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 a^3 d \sqrt{e \cos (c+d x)}}+\frac{4 e (e \cos (c+d x))^{13/2}}{5 a d (a \sin (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(15/2)/(a + a*Sin[c + d*x])^3,x]

[Out]

(26*e^3*(e*Cos[c + d*x])^(9/2))/(45*a^3*d) + (26*e^8*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(21*a^3*d*S
qrt[e*Cos[c + d*x]]) + (26*e^7*Sqrt[e*Cos[c + d*x]]*Sin[c + d*x])/(21*a^3*d) + (26*e^5*(e*Cos[c + d*x])^(5/2)*
Sin[c + d*x])/(35*a^3*d) + (4*e*(e*Cos[c + d*x])^(13/2))/(5*a*d*(a + a*Sin[c + d*x])^2)

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2682

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e
 + f*x])^(p - 1))/(b*f*(p - 1)), x] + Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2), x], x] /; FreeQ[{a, b, e, f, g
}, x] && EqQ[a^2 - b^2, 0] && GtQ[p, 1] && IntegerQ[2*p]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(e \cos (c+d x))^{15/2}}{(a+a \sin (c+d x))^3} \, dx &=\frac{4 e (e \cos (c+d x))^{13/2}}{5 a d (a+a \sin (c+d x))^2}+\frac{\left (13 e^2\right ) \int \frac{(e \cos (c+d x))^{11/2}}{a+a \sin (c+d x)} \, dx}{5 a^2}\\ &=\frac{26 e^3 (e \cos (c+d x))^{9/2}}{45 a^3 d}+\frac{4 e (e \cos (c+d x))^{13/2}}{5 a d (a+a \sin (c+d x))^2}+\frac{\left (13 e^4\right ) \int (e \cos (c+d x))^{7/2} \, dx}{5 a^3}\\ &=\frac{26 e^3 (e \cos (c+d x))^{9/2}}{45 a^3 d}+\frac{26 e^5 (e \cos (c+d x))^{5/2} \sin (c+d x)}{35 a^3 d}+\frac{4 e (e \cos (c+d x))^{13/2}}{5 a d (a+a \sin (c+d x))^2}+\frac{\left (13 e^6\right ) \int (e \cos (c+d x))^{3/2} \, dx}{7 a^3}\\ &=\frac{26 e^3 (e \cos (c+d x))^{9/2}}{45 a^3 d}+\frac{26 e^7 \sqrt{e \cos (c+d x)} \sin (c+d x)}{21 a^3 d}+\frac{26 e^5 (e \cos (c+d x))^{5/2} \sin (c+d x)}{35 a^3 d}+\frac{4 e (e \cos (c+d x))^{13/2}}{5 a d (a+a \sin (c+d x))^2}+\frac{\left (13 e^8\right ) \int \frac{1}{\sqrt{e \cos (c+d x)}} \, dx}{21 a^3}\\ &=\frac{26 e^3 (e \cos (c+d x))^{9/2}}{45 a^3 d}+\frac{26 e^7 \sqrt{e \cos (c+d x)} \sin (c+d x)}{21 a^3 d}+\frac{26 e^5 (e \cos (c+d x))^{5/2} \sin (c+d x)}{35 a^3 d}+\frac{4 e (e \cos (c+d x))^{13/2}}{5 a d (a+a \sin (c+d x))^2}+\frac{\left (13 e^8 \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{21 a^3 \sqrt{e \cos (c+d x)}}\\ &=\frac{26 e^3 (e \cos (c+d x))^{9/2}}{45 a^3 d}+\frac{26 e^8 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 a^3 d \sqrt{e \cos (c+d x)}}+\frac{26 e^7 \sqrt{e \cos (c+d x)} \sin (c+d x)}{21 a^3 d}+\frac{26 e^5 (e \cos (c+d x))^{5/2} \sin (c+d x)}{35 a^3 d}+\frac{4 e (e \cos (c+d x))^{13/2}}{5 a d (a+a \sin (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 0.369593, size = 66, normalized size = 0.39 \[ -\frac{4 \sqrt [4]{2} (e \cos (c+d x))^{17/2} \, _2F_1\left (-\frac{1}{4},\frac{17}{4};\frac{21}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{17 a^3 d e (\sin (c+d x)+1)^{17/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^(15/2)/(a + a*Sin[c + d*x])^3,x]

[Out]

(-4*2^(1/4)*(e*Cos[c + d*x])^(17/2)*Hypergeometric2F1[-1/4, 17/4, 21/4, (1 - Sin[c + d*x])/2])/(17*a^3*d*e*(1
+ Sin[c + d*x])^(17/4))

________________________________________________________________________________________

Maple [A]  time = 0.658, size = 251, normalized size = 1.5 \begin{align*} -{\frac{2\,{e}^{8}}{315\,{a}^{3}d} \left ( -1120\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{11}-2160\,\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{8}+2800\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{9}+3240\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) -784\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{7}-840\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -1624\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}+195\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -120\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) +1162\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}-217\,\sin \left ( 1/2\,dx+c/2 \right ) \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(15/2)/(a+a*sin(d*x+c))^3,x)

[Out]

-2/315/a^3/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*e^8*(-1120*sin(1/2*d*x+1/2*c)^11-2160*cos(1/
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+2800*sin(1/2*d*x+1/2*c)^9+3240*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-784*s
in(1/2*d*x+1/2*c)^7-840*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-1624*sin(1/2*d*x+1/2*c)^5+195*(2*sin(1/2*d*x+1
/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-120*sin(1/2*d*x+1/2*c)^2*c
os(1/2*d*x+1/2*c)+1162*sin(1/2*d*x+1/2*c)^3-217*sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \cos \left (d x + c\right )\right )^{\frac{15}{2}}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(15/2)/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(15/2)/(a*sin(d*x + c) + a)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{e \cos \left (d x + c\right )} e^{7} \cos \left (d x + c\right )^{7}}{3 \, a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3} +{\left (a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3}\right )} \sin \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(15/2)/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

integral(-sqrt(e*cos(d*x + c))*e^7*cos(d*x + c)^7/(3*a^3*cos(d*x + c)^2 - 4*a^3 + (a^3*cos(d*x + c)^2 - 4*a^3)
*sin(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(15/2)/(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(15/2)/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

Timed out